
Formal Construction of the Mathematically Analyzed Separation Kernel

W. Martin P. White E S. Taylor A. Goldberg

Abstract

This paper describes the formal specijication and devel-
opment of a separation kernel. The Mathematically Ana-
lyzed Separation Kernel (MASK), has been used by Mo-
torola on a smartcard project, und as part of a hardware
cryptographic platform called the Advanced INFOSEC Ma-
chine (AIM). Both MASK and AIM were jointly developed
by Motorola and the National Security Agency (NSA).

The paper will begin by describing the separation kernel
concept and its importance to information security. Next it
will illustrate the SPECWARE formal development method-
ology used in the development of MASK. Experiences and
lessons learned from this formal development process will
be discussed. Finally, the results of the MASK development
process are described, project successes are discussed, and
related MASK research is highlighted.

1. Introduction

In 1993 an informal separation kernel working group
was established to study a new model called the separation
kernel paradigm. The separation kernel paradigm was orig-
inally proposed in the 1980’s by John Rushby [5] . It was
investigated as an approach to replace the traditional secu-
rity kemel [l] concept of the Orange Book [3]. While the
separation kemel concerns itself with only two functions,
namely, iilformationJlow and data isolation, traditional se-
curity kemels implement all of the functions specified for a
given level of certification in the Orange Book.

One problem with past implementations of the security
kernel paradigm was that application specific procedures
and processes always found their way into the kernel and,
consequently, into the trusted computing base. In the secu-
rity kernel paradigm, the trusted computing base grows and
eventually consumes a large portion of the system. The rea-
son this happens in the security kernel paradigm is that the
kernel and the trusted computing base are both unwilling to
share the security burden with the application.

In contrast, the separation kernel empowers the appli-
cation with the ability to define complex security policies
and then provides the application the ability to enforce those

policies itself. This is done by strictly enforcing an informa-
tion flow policy between application components, which, in
tum, ensures that critical components are not bypassed.

MASK is an implementation of the separation kernel
paradigm. Developed using the SPECWARE formal method-
ology, MASK achieves a high assurance of separation.
Moreover, MASK is currently being considered for submis-
sion for common criteria EAL7 [2] certification.

2. Separation kernel concept

Operating system research has concentrated on organiz-
ing basic operating system functions into a collection called
a kemel. The kemel presents abstractions of the fundamen-
tal resource management mechanisms to other, less prim-
itive, service providers. In operating system implementa-
tions that attempt to provide a basis for secure information
processing, the kemel software is carefully constructed and
evaluated. To aid the evaluation process, the kernel func-
tions are implemented as relatively small programs that are
independent of one another.

A separation kernel is charged with the critical task of
providing separation among process spaces by manipulat-
ing the protection features of the system. A separation ker-
nel creates “an environment which is indistinguishable from
that provided by a physically distributed system.” [5] The
environment within the parallelogram of figure 1 depicts
separation in a physically distributed system.

This view becomes somewhat more clouded when the
functionality of these boxes and arrows is implemented in-
side an environment in the context of an operating system
and hardware. Figure 1 is its entirety provides a view of
this context and the possibilities of unintentional informa-
tion flow due to the platform substrate. For example, while
Box 4 should not be able to communicate to Box 1, the sub-
strate allows information to pass from Box 4 to Box 1, as
noted by the arcing arrow. This type of information flow is
often referred to as a covert channel. That is, a mechanism
which is used to establish communication between two en-
tities, where the mechanism was not intended to be used for
communication.

Naturally, separation kemels are desirable because they
enforce the policy of restrictions on communications. These

133
0-7695-07 10-7/00 $10.00 0 2000 IEEE

\

‘ \ \ 1 1
\ /,/

\ \ //

Platform substrate: OS, hardware

Figure 1. Potential covert channel

concerns are becoming more prevalent as networking of
resources intensifies. For instance, there are many pro-
grams within the government which combine communi-
cations functionality implemented on physically separate
boxes into a single communications device, exactly the sit-
uation introduced above. The resulting communications de-
vice requires a high degree of separation between the com-
munications channels, since these channels may have dif-
ferent security levels and inherent separation requirements.
Thus miniaturization of communications devices is an im-
portant stimulus for the separation kemel concept.

In addition, the following are benefits of the separation
kemel:

Precise translation of the logical architecture into a
physical implementation. Because the separation kemel
completely separates processes, it provides a faithful physi-
cal implementation of a logical architecture.

Fail safety. When two processes have unintentional,
and often unknown, interactions, it is not possible to con-
sider the error properties of one process in isolation. Errors
in one process may propagate to others. Indeed, this in-
terdependency makes it difficult or impossible to determine
the fail safety of the system.

Availability. When processes are truly independent, it
is possible to provide independent backups and check pro-
cesses for a critical function.

SecuriQ. A classical security property is r e a l a c k
separation on a cryptographic device. When processes have
unintentional communications, it is not possible to conclude
that red processes may communicate to black processes
only via a cryptographic process. However, if the system is
implemented on a separation kemel, by a simple inspection
of the system architecture diagram, it is possible to conclude
that red processes communicate with black processes only
via a cryptographic function.

3. Realization of a separation kernel

The principle abstraction for MASK is the cell. A cell
is a domain of execution, or a context, and a collection of
strands. Cells have globally unique CellIDs, and strands
have globally unique StrandIDs. Each strand is a stream

of instructions to be executed when a message is input
to a strand of a cell. These abstractions, and their inter-
relationships, are illustrated in figure 2.

The context of the cell consists of memory segments,
permanent and transient, defined by a starting address and a
length. Additionally, each cell can execute only one strand
at a time. In figure 2, CellB is currently not executing any
strand. It will begin execution some time after it is granted
access to a message from Cell.4 bound for Strand?. When
the strand of the cell is launched, the cell receives access
to the message segment(s) that make up the input message.
The cell may also require scratch segments to process the
message. The cell can dispose of transient segments either
by sending them in a message to another cell, or by sus-
pending. The substrate under the cell layer will ensure that
when the cell suspends, access to all transient segments is
removed, leaving the cell in its base state of having access
only to its permanent segments.

Each strand is “run to completion.” This means that the
strands on the same processor do not preempt each other.
The only exception is that an interrupt strand is run immedi-
ately upon receipt of the interrupt. Thus a strand’s execution
may be interleaved with the execution of interrupt strands.

Finally, a cell interfaces to its extemal world (hardware
and other cells) only through the substrate. An example
of cell interfaces, is illustrated in figure 2. In this figure,
Strands of CellA is running. First, the strand is launched
by the kemel, at which time the strand is given access to
its message segment(s) and scratch segment(s), by the ker-
nel. After more of the thread of execution is consumed, the
strand uses the Send interface to send a portion of its tran-
sient segments to Strand4 of CelfB. CellA loses access to the
segments transmitted at the time it uses the Send interface.
The next interface used by Strands of CellA is the Throw
interface, causing an exception condition. This terminates
execution of Strands of CellA, and causes the Handler func-
tion to be run. When Strands of Cell.4 terminates, the kemel
removes access to all of the transient segments remaining in
CellA. If Strands of CellA had not terminated by the excep-
tion condition, it would have reached the end of its strand,
where it calls the Terminatestrand interface. This interface
terminates the execution of the strand, at which time the ker-
nel removes access to any transient segments still accessible
to the cell.

3.1. Separation concept

This section describes two of the key axioms of the sep-
aration concept, so that the reader gets some feeling for the
notion of an abstract specification, having only properties of
the desired system, but no details of the system. The com-
muting diagram in (1) depicts the fundamental sorts and op-
erations that define the system to be considered, the evolu-

134

Figure 2. MASK cells

tion of the system over time, the subjects of the separation
policy in the system, and the identification of the subjects
of the system. These concepts are:

0 System: Multiple Cell Abstraction (MCA)
0 System Evolution: The lnit and' Next operators, pro-

0 Subject: Cell or Single Cell Abstraction (SCA)
Identification: CellID

ducing all possible multiple cell abstractions.

Next
M C A l MCA2

Fiber, 1 I (1)
Fiber,

SCAC, SCAm

Fiber, o Next, = FiberNext 0 Fiber,

The Fiber function is displayed in its curried form, i.e.
as a subscripted function from MCA to SCA. The curry
operation takes a function of two arguments, such as Fiber,
and produces a family of functions of one argument, such
as Fiber,. There is one Fiber, for each CellID c. Each
function Fiber, determines the SCA corresponding to the
CellID c in the subscript.

The operators lnit and Next are specified to be the con-
structors of the MCA. This means that all possible MCA
states are the result of system initialization, and the ad-
vancement of the system state one step at a time by the Next
operation. This specifies that the system cannot land in any
"unspecified" states that might not satisfy the security con-
straints. The only possible states are arrived at using lnit
and Next, which obey all of the axioms of the specification.

There is a similar constraint upon the SCA, stating that
any SCA must be the result of a Fiber operation on an MCA.
Since the MCA is constrained to be in valid states, as con-
structed by Init and Next, this constrains the SCAs to be in
valid states resulting from taking a Fiber of a valid MCA.

The axiom associated with the commuting diagram is
shown in (1). This axiom equates the result of applying
the functions along the two paths from MCA 1 to SCA,, .

This equation also introduces the Next and FiberNext
operators. The Next operation advances the state of the
system (the MCA), while the FiberNext operation advances
the state of a single cell within the system. Similar to the
Fiber function, Next requires two arguments, the system
state (MCA), and the CellID of a cell. Next, is the curried
form of Next, i t advances the system state by advancing the
cell indicated by the subscript c.

In simple terms, what this equation is saying is that when
the system state is advanced by one step, the change in the
system state corresponds to a change in the state of one of its
cells, as identified by the Fiber function. If you look at the
system state before advancing it one step, and then look at it
after advancing it one step, then there will be a unique cell c
accounting for this advance in the state of the system. This
cell c accounts for the advance in the state of the system by
advancing its own single cell state by one step.

This equation ties in the Fiber function with the Next
function. Without this tie, there is no guarantee that (for
example) Next might not interchange two fibers, resulting
in confusion. In summary:

0 The Fiber function must choose a portion of the sys-
tem state (the multiple cell abstraction) corresponding to the
CellID.

The portion of the system state chosen must be trans-
formed in a way that makes sense with the Next and
FiberNext operations.

3.2. Separation axioms

The first separation axiom, or communication policy,
describes which cells are permitted to communicate with
which other cells. Since the communication policy refer-
ences the concept of a cell, i t is logical that the statement of
the communication policy should reference the definitions
of the Next and Fiber functions. Indeed, one purpose for
separating the system into cells is to restrict communica-
tions. Figure 3 depicts the axiom for the communication
policy in the MASK system.

(2) shows the communication policy axiom in its contra-
positive form. It states that if the fiber of cell y changes as
the result of advancing the state of cell 2, it must be the case
that z is permitted to communicate with y.

Fiber,(MCA) # Fiber,(Next,(MCA))
j Communicates(z, y) (2)

When the MASK kemel is elaborated in the cell level
specifications, a particular consequence of the communica-

135

MCA;
"4 / MCA;

I MCA'
. - Fiber, .

-
Fiber,

P Next,

/
MCA
\

Fiber,
\ \

r SCA,

8 indicates that communication cannot occur.

Figure 3. Fibration and communication

tion policy axiom is that cell z can send messages to :y only
if cell z has permission to communicate with y.

The second separation constraint upon cells is depicted
in the (non-commuting) diagram in figure 4 and as the con-
sequence in (3). These represent that if an action by cell
z (advancing the state of the SCA for cell z) is going to
change the state of cell y, then the change in the state of y
depends only on the states of z and ;y. In other words, the
new state of ;y is a function of the previous states of z and :y.
Without this axiom, if z changes ;y, it could do so by copy-
ing everything from a third cell z into the SCA of y . This
would constitute an unspecified connection between z and
y. The purpose of this axiom is to rule out such a connec-
tion.

Fiber,(MCAl) = Fiberx(MCA2) 3

Fiber,(Next, (MCA1)) = Fiber,(Next, (MCA2))
Fiber,(MCA1) = Fiber,(MCA2) 3 (3)

3.3. Kernel design choices

This section describes design choices that were made to
preserve the separation property, while permitting a rela-
tively simple table-driven kernel implementation. The ba-
sic concept for memory allocation is that a strand receives
all of its memory resources when it is started (launched),
and yields all of its memory resources when it terminates.
Figure 2 shows a strand in operation, from Launch through
Terminatestrand.

At strand launch time, the strand is allocated the memory
it requires, according to the strand memory requirements.
These requirements are constant for that strand, in that they
are the same each time the strand is launched. The strand
receives two kinds of transient segments upon launching,
message and non-message segments.

:A',), I Y Y

f: FiberNext z: Fiber,
n: Next, ;y: Fiber,

Figure 4. The second separation axiom

0 Message segments are segments which have been sent
by some other strand to the strand being launched for further
processing. It is the existence of this message that caused
the strand launch.

0 Non-message segments are segments which are de-
scribed by the strand memory requirements.

The strand requirements describe the number and size of
non-message transient segments required by the strand. As
the strand executes, i t undergoes interactions with the ker-
nel, in this case by sending a message. If the strand elects to
send some of its transient segments as part of the message,
then access to these segments is lost at this point. Thus the
strand can lose access to transient segments as it executes,
but it cannot gain access to any more transient segments as
it executes.

The allocation of transient segments to strands obeys the
following properties:

0 Before strand launch, the strand has access only to the
permanent segments of the cell.

0 Transient memory requirements of the strand are a
function of the strand, known at compile time.

0 The kernel does not launch the strand until there is
sufficient memory to satisfy the strand's requirements.

0 Transient segments that are not message segments are
zeroized before allocation.

0 As the strand executes, it can lose memory segments
(by send message), but it cannot allocate more segments.

0 Strand termination causes all transient segments to be
released by the kernel.

136

From these properties, the following conclusions can be
drawn:

0 After strand termination, the strand has access only to
the permanent segments of the cell.

0 Each time the strand runs, the amount of memory
available is the same, as specified by the strand memory
requirements.

Because of these properties and their implications, the
strand sees exactly the same amount of allocated memory
each time it runs, and consequently, there is no flow of infor-
mation caused by the amount of allocated memory while it
is running. Thus, there is no covert channel stemming from
the amount of allocated memory. This eliminates the typi-
cal memory allocation covert channel that results from the
ability of one process causing resource exhaustion, while
another detects it.

In general, kernel design choices were made to avoid sit-
uations where cells and strands can deplete resources inter-
nal to the kernel. There is still one case where the cells and
strands can deplete a kernel resource. A send message could
deplete the kernel schedule queue, so this is considered a
fatal error. The kernel schedule queue must be engineered
to be sufficient to handle the maximum number of strands
scheduled for the maximum load of the application running
on the kernel.

4. MASK program overview

The primary objective of the MASK project was to for-
mally construct a separation kernel that could be used in the
development of secure embedded systems. In an effort to
formally construct such a separation kernel, the following
major tasks were outlined and completed: (1) the specifica-
tion of the separation property; (2) the development of an
abstract description of the separation kernel; and (3) formal
implementation of this abstract description.

The first step was spec$cation of the separation prop-
erty This work began by considering typical operating sys-
tem concerns such as how to handle registers, devices, tran-
sient memory, permanent memory and so on. These con-
cepts were clouding our thinking about separation. Indeed,
the many operating system details were threatening to lead
to the formulation of a separation property that was tied to
a particular operating system. Such a separation property
might miss an important aspect of separation, or be so tied
to a particular implementation that it could not be reused
on even slightly different systems. In addition to avoiding
the complicating details mentioned above, the objective of
establishing with a high degree of certainty that our end sys-
tem satisfied the separation property made it clear that the
simplest formulation of the separation property was needed.
Consequently, separation was considered in the abstract, in
a way that would apply to separate channels, separate fre-

quencies, separate accounts, etc. The result of this endeavor
was a very short specification of the separation property
that can be applied to any sort of system where separation
is a concern, such as operating systems, radio frequencies,
plumbing, etc.

The second step was an abstracr,descriprion of the sep-
aration kernel. During the process of specification, the dis-
covery was made that the step from an abstract specifica-
tion of separation to an implementation level specification
was too large of a step. What was missing was a specifi-
cation of what services the kernel would offer to the user
mode processes. This specification details the view of the
world offered to each process. The view of the world in-
cludes direct access to resources, such as memory and reg-
isters, and indirect access to resources, such as the ability to
send a message. If the kernel does something internally to
its resources that makes it impossible for a process to send
a message, then the kernel is in danger of implementing a
covert channel, because the process could detect something
about the kernel state by its ability to send a message. This
specification details how each service offered to the user
mode process affects the view of the world given to the user
mode process. The specification was very valuable because
the software designers could begin to design their software
based on the interfaces detailed in this specification. The ab-
stract description of the separation kernel was a refinement
of the separation property, in that the separation property
must be implied by this specification.

The final specification step was the formal implementa-
tion of the abstract description. Given the specification of
the services to be provided, the implementation level spec-
ification details the data structures and algorithms used to
build the kernel. For example, a priority queue was spec-
ified to implement the scheduling provided by the kernel.
The formal implementation of the abstract description is a
refinement of the abstract description of the separation ker-
nel, in that it supports the services as specified, and has no
other “features” besides those services.

There were two main sources of changes to the specifi-
cations. The first source of changes was requests for addi-
tional or extended services. One team was using the kernel
to support the smartcard development. The concern for the
smartcard team was to separate smartcard applications. For
example, if two different credit card companies have a credit
card application on the same smartcard, then neither wants
to trust the other to interfere with their operations. Thus
strict separation between these applications is important. As
progress was being made, the team building the Advanced
INFOSEC Machine (AIM) cryptographic processor began
building their software. The main concern for AIM was es-
tablishment of separate cryptographic channels. Each chan-
nel might have data at a different security level, using dif-
ferent cryptographic algorithms. The AIM team had some

137

additional requirements for MASK. For example, to support
AIM a processor version of the remote procedure call (WC)
mechanism between the separated processes was built.

Because of the hierarchy of specifications in three lay-
ers, when a new or extended service was considered, con-
sideration was first given to whether the service could be
implemented in accordance with the separation property.
In addition, consideration could be given to how much im-
pact the service would have on the existing implementation
level specifications. By playing these two considerations off
against each other, services could be provided that would
support both the smartcard and AIM projects, that would
embody the principle of separation, and that could be im-
plemented economically.

A second source of changes came from the fact that
the bottom layer specification was hand translated into C
code, a formal implementation of the abstract description.
When the coders took their hand to the design, they often
found more efficient ways to implement the kemel, in terms
of both memory and time. When such a design improve-
ment was suggested, consideration was given how to mod-
ify the specifications to match the proposed change, and if
the change could still establish the kemel as a refinement
of the abstract description of the separation kemel. Note
that the abstract separation property does not enter into the
decision, because the abstract description of the separation
kemel already embodies the separation property. By show-
ing that the abstract description is still valid, it is shown that
the separation property is preserved.

the desired system, so it is more akin to an axiomatic defi-
nition of a mathematical structure such as a group or a j e l d
than it is to a specification of a piece of software. It specifies
only the separation properties of the system. It is extremely
under-specified in the sense that there are many systems,
other than MASK, which could satisfy this specification.

5.2. Multiple cell abstraction specification

The multiple cell abstraction (MCA) level specification
details how the MASK kemel shall meet the separation
specification, i.e. this specification instantiates the separa-
tion specification. The design choices of MASK are made
in this specification, and in the refinement of separation to
MCA, as described in section 3.3.

The MCA specification is built from the Single Cell Ab-
straction (SCA), which formally details how a cell, strand,
segment, etc. behave, as informally described in section 3.
It then formally describes what happens to a system com-
posed of many cells. It serves as the basis for a descrip-
tion of the kemel to application programmers building cells
and strands to run on the kemel. It describes precisely the
semantics within a cell. The kemel calls available to the
programmer are described in thorough detail. The assem-
bly language instructions available to the programmer are
described only in terms of the segments, e.g. the execution
of a load operation will affect the registers of the cell, based
upon the memory segments of the cell.

5.3. Kernel specification
5. Formal methodology

SPECWARE, under development at Kestrel Institute in
Palo Alto, California, is an environment for the specification
and formal development of software with its primary objec-
tive being the correct development of entire systems. It is
the mechanism which enables builders to organize build-
ing blocks, i.e., specifications, into a purposeful whole. It
achieves this goal by incorporating ideas from mathemati-
cal logic which help to integrate several notions in software
engineering. More specifically, SPECWARE provides for the
formal composition of specifications and software compo-
nents and the refinement of specifications to code.

The major specification layers and refinements used for
the MASK development took place at three levels, the sepa-
ration level, the multiple cell abstraction level, and the ker-
nel level, as discussed in section 4.

5.1. Separation specification

The separation specification is a type of specification that
may be less familiar to software designers. As highlighted
in section 3.1, it specifies only mathematical properties of

The purpose of the kernel specification is to detail the
actual data structures and algorithms used to construct the
implementation of the kemel. Thus while the MCA is an
application programmer view of the kernel, the kemel spec-
ification is the kernel implementor's view.

5.4. MCA to kernel specification refinement

The refinement of the MCA specification to the ker-
nel specification is primarily a matter of data structure re-
finement. In the MASK implementation level specifica-
tions, the scheduling is accomplished by means of a priority
queue. As shown in figure 5, the multiple cell abstraction
layer version of the priority queue, called schedule map, is
built from a total mapping from priority to a list of mes-
sages. Message further decomposes into a quadruple, con-
sisting of a source strand, target strand, command word, and
a list of message segments. A message segment list is a
list of transient segment IDS (TSID). Thus, a priority queue
specification gets built from many specifications: Lists, to-
tal maps, quadruples, TSID, strand ID, etc. In the schedule
map specification, all of these component specifications are

138

Index

Figure 5. Priority queue refinement

combined, and this combination is then extended with the
particular functions that implement the scheduling mecha-
nism of the kernel.

At the kernel layer, the specification hierarchy for pri-
ority queue is similar, as shown in figure 5. The main dif-
ference is in how a message is represented. At the MCA
level, the cell wishes to be able to see the components of
the message. At the kernel level, the message is represented
by the message ID. In the kemel, the contents of the mes-
sage are found by using the message ID to index a message
map. The message map, not shown in the figure, is a kernel
implementation detail not visible at the MCA layer. If the
message map were visible at the MCA layer, then it is likely
that covert channels could be implemented using the mes-
sage map. Keeping such implementation details invisible is
important in the design of the kernel, and in the specifica-
tions and refinements used to build the kernel.

Software development is accomplished in SPECWARE by
refining one specification into another. Refinement is a pro-
cess in which all the elements of one specification are repre-
sented in terms of another [4]. As shown in figure 5, where
dashed arrows represent refinement and solid arrows repre-
sent composition, the priority queue can be refined into a
map of lists. Each element of the map corresponds to one
of the system priorities. The use of a map makes it easy
to search from the highest to the lowest priority in the pri-
ority queue. Each entry in the map is a list maintained in
First In First Out (FIFO) order. Each message can be a
structure of four elements (source strand ID, target strand
ID, command word, and message segment list). At the cell
level, once a message is delivered to a cell, the cell can di-
rectly reference the components of the message, such as the

source strand ID, to determine which cell sent the message.
When the delivery of the message is mapped down to the
kernel specification, the kemel must first look up the mes-
sage in the message map, and then make the components
of the message directly visible to the receiving cell. When
the cell is scheduled, the kernel in fact looks up the mes-
sage and places the contents of the message on the stack of
the scheduled cell. The cell can see that the contents are
on its stack, but the cell knows nothing of the message map
that is used by the kemel. The refinement specifies how the
cell’s view of messages is mapped down to the particular
implementation chosen for the kernel.

6. MASK review

The review of the SPECWARE MASK kernel specifica-
tion to C code implementation required a comparison be-
tween each sort, operation, and axiom of the MASK kernel
specification and the corresponding C code implementation.
The specifications are arranged in the three levels, separa-
tion, multiple cell abstraction, and MASK kemel. In addi-
tion, the C code implementation forms another level to be
reviewed. The separation level is simple, describing separa-
tion in abstract terms. The multiple cell abstraction (MCA)
level is complex, combining many small specifications into
the MCA specification to detail the behavior of a process
from the point of view of a cell. The MASK kemel specifi-
cation is the most complex, detailing how the MASK kernel
implements the MCA level.

In addition to these levels, there are also basic, shared,
and kemel primitive specifications. The basic specifications
are domain independent specifications such as map and list.
These specifications can be thought of as the basic building
blocks upon which any development might be built. The
shared specifications are domain dependent and are used
across multiple layers of the specification, usually in the
MCA and MASK kemel layers. For example, much of the
priority queue specification can be shared between the two
layers. The MASK kemel layer incorporates the detail of
how the priority queue is implemented, but the behavior of
the priority queue in terms of scheduling algorithm is invisi-
ble at the MCA level. Finally the kemel primitive specifica-
tions are the domain dependent specifications upon which
MASK was built. Examples of kernel primitive specifica-
tions are send and launch. The launch primitive describes
how a strand is started, and the send primitive describes how
messages are sent between strands.

6.1. Specification review-MCA

This review focused on the Multiple Cell Abstraction
(MCA) specification. The MCA is a collection of single
cell abstractions, where a single cell abstraction defines the

139

view of the world of a single cell. Therefore, the MCA em-
bodies the collection of all cells in the system.

The main finding of the review at the MCA level was that
the MCA should be defined in a functional manner. The first
draft of the MCA specification defined the cell abstractions
in terms of their properties only, rather than as functions.
For example, prior to launching a strand of a cell, the prop-
erties state only that the resources required by that strand
are visible (allocated) to that strand. When these proper-
ties were replaced by a functional definition, a function was
specified to explicitly construct the lists of resources. Using
functional definitions brought two important points to light:

0 Executability: The functional definition of the MCA
level primitives raises the possibility of having a functional
model of MASK without the MASK implementation level
specification. This can be useful in determining whether the
kemel is robust enough to support the project objectives.

Totality: Though not strictly required, all of the func-
tional definitions were made total. While if it can be shown
that a function is never called with certain arguments, then
the function need not be specified on those arguments, hav-
ing these partial functions makes the specification harder to
review, since the question always arises “What will happen
if the function is called with those arguments?’.

6.2. Refinement review-MCA to MASK kernel

The MCA to MASK kernel refinement provides an av-
enue for representing sorts and operations at the cell level
as sorts and operations at the kernel level. The actual re-
finement is built of three specifications and the relationships
between these specifications. The specification MCA-AS -
MASK-KERNEL is developed and acts as mediator between
the MCA and MASK- KERNEL specifications. This develop-
ment is done in large measure by writing cell operations in
terms of kemel operations. Having a functional definition
(with no partial functions) made the refinement from MCA
to MASK-KERNEL easier to specify. In short, the less de-
tailed functions at the MCA level are mapped to the more
detailed functions at the MASK kemel level.

6.3. Specification review-separation

This review focused on the separation specification. The
separation specification incorporates several operations and
constraints on the interactions of cells. It remains strictly
abstract, specifying properties and not functions. This is
appropriate because it is intended to apply to many systems,
not just MASK.

6.4. Refinement review-separation to MCA

The final aspect of the review was that of the refine-
ment of Separation to Multiple Cell Abstraction. The com-

ponents of this refinement, SEPARATION-AS-MCA, acts
as the mediating specification between SEPARATION and
MCA. The focus of this review was to ensure that each oper-
ation provided to cells by MASK maintains the separation
property between cells. A major purpose of the MCA level
is to make this refinement easier. Because the MCA level
details the effect of each operation on the resources that are
visible to cells, the separation property for each type of re-
source can be stated in the MCA level, and the maintenance
of those properties can be checked.

6.5. MASK kernel specification to code-details

Several changes were identified in the MASK-KERNEL
specification to code review. The change to using both total
functions and functional specifications was found to help
here, since it is much easier to review a functional defini-
tion against the code than the specification of properties.
The functions in the MASK- KERNEL specification corre-
spond one to one with functions in the C code. Some of the
changes identified were:

Kernel Truce: The specifications require a kemel
trace, i.e. a log of the kemel calls made by the cells. The in-
tent was that the trace be of assistance when the applications
required debugging. The debugger could view the sequence
of kemel activities, resulting in information about what was
going on in the system before the error occurred. Future
versions of MASK are envisioned in which the kemel trace
can be retrieved by a system administrator to assist in re-
mote debugging of systems. One project was resistant to
putting in the kemel trace, because of the perceived perfor-
mance hit. The kemel trace was put in, and proved useful in
development of the applications hosted by the kemel. The
lesson is that even real time, performance critical applica-
tions should have trace capabilities in the delivered system.

Kernel Tampering: The code had several checks of
the “this should never happen” variety. The specification
did not have these, since in the mathematical world, such
events are indeed impossible. However, MASK may be im-
plemented on hardware that does not offer good protection
against hardware faults. While tampering with MASK by
the application code is not possible in the delivered system,
such tampering is possible in the development environment,
so these checks prove useful in the development of appli-
cations on MASK. The MASK-KERNEL specification was
modified to reflect these error conditions.

Code Errors: A few code errors were found. For
example, it was discovered that one cell could pass inter-
rupt handing responsibilities to another cell, forming a type
of communication channel while the specification required
that interrupt handling responsibilities for a given interrupt
always remain within a single cell. Naturally, the code was
updated to have this restriction.

140

7. Success story

The MASK kemel is now executing on board the AIM
chip, which is being incorporated into many Department of
Defense (DoD) projects, such as the KOV 20 key manage-
ment system for the F22 fighter aircraft, the Defense Mes-
sage Radio (DMR) for naval communications, and others.
Based in part upon the MASK technology, the AIM chip
has been certified for Type- 1 cryptographic applications.
MASK has also made clear the relevance of the SPECWARE
technology to Information Security (INFOSEC) applica-
tions such as AIM. The use of the composition and refine-
ment operations was crucial in our efforts to clearly state
the separation property, and refine it into a usable kernel.
MASK has proven efficient enough to support the applica-
tions of AIM to date. This includes being small enough to
fit in the very limited on board ROM of the AIM chip.

8. Future work

Krenz [6] is an architecture that can provide higher grade
security to COTS platforms such as NT, Linux, or Unix.
The Krenz architecture builds on the separation concept de-
veloped under the MASK program. It extends the concept
by requiring that a specified filter be applied to information
flowing between any two cells.

The basic architectural concept of the Krenz is to permit
COTS platforms to operate in the information processing
modes specified by the organization, and to have the plat-
form enforce the filters between the information processing
modes. One conception of a COTS platform, from a secu-
rity perspective, is depicted in figure 6. Within this figure,
the COTS platform is pictured as a whirlwind of activity that
is beyond the control of any serious security enforcement.

A COTS platform is pictured as our of control for the
following reasons:

0 It includes millions of lines of code. Such large bod-
ies of code are beyond analysis.

0 It is frequently compromised, as witnessed by the se-
curity advisories released by the Computer Emergency Re-
sponse Team (CERT).

0 It is frequently updated, with new versions of system
features, patches to bugs, and even patches to address the
CERT advisories.

0 Applications on it are frequently updated.
0 It is frequently exposed to the Internet, and the hack-

ers and viruses that lurk there.
The first architectural concept is to bound the COTS plat-

form. In figure 6, the COTS platform remains a whirlwind
of activity, but the whirlwind is constrained inside a box
comprised of several boundary components. These com-
ponents regulate the interaction of the whirlwind with the
world around it. Since they can be brought under control,

Leak Filter

Filter

Figure 6. Information flow restrictions

assertions can now be made about the flow of information
into and out of the whirlwind, but not about what happens
to the information inside the whirlwind.

Given that the whirlwind can be contained, then it can
be constrained to follow the organization’s flow restrictions.
If the whirlwinds were not contained, few assertions could
be made about the flow of information between modes.
The model of processing shown in figure 6 is often imple-
mented by having two physically separate COTS platforms,
on physically separate networks, with written policies con-
cerning what can be transferred between the platforms. This
is a valid implementation of the Krenz concept.

References

[l] D. Bell and L. LaPadula. Secure computer systems: Unified
exposition and multics interpretation. Technical Report MTR-
2997, Mitre Corporation, March 1976.

[2] Common Criteria Project Sponsoring Organizations. Com-
mon Criteria for Information Technology Securiy Evaluation,
Version 2.1, August 1999.

[3] Department of Defense. Department of Defense Trusted Com-
puter System Evaluation Criteria, December 1985.

[4] Kestrel Institute, 3260 Hillview Avenue, Palo Alto, California
94304. Specware Language Manual, 2.0.3 edition, March
1998.

[5] J. Rushby. Design and verification of secure systems. In
Proceedings of the Eighth Symposium on Operating Systems
Principles, volume 15, Dec. 198 1.

[6] P. White. High confidence CDSA program, final architecture
report. Technical report, Motorola, 1999.

14 1

